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We have developed a generalization of the method of statistical linearization to 
enable us to describe transient and other nonstationary phenomena obeying 
stochastic nonlinear differential equations. This approximation technique pro- 
vides an optimal Gaussian representation with time-dependent parameters. The 
algorithm specifies a set of ordinary differential equations for the Gaussian 
parameters in terms of the time-dependent average nonlinearities. We apply the 
general formalism developed herein for single degree of freedom dissipative 
systems to a particular example. 
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1. I N T R O D U C T I O N  

M a n y  prob lems  arising in the s tudy of phys ica l  p h e n o m e n a  are most  
na tura l ly  represented  in terms of systems of non l inear  s tochast ic  di f ferent ia l  
equat ions.  (]-4) The  diff icul ty in ob ta in ing  solut ions to such equat ions  is 
twofold.  The  first is the p rope r  t r ea tment  of the non l inea r  aspects  of the 
system, and  the second  is the analysis  of the s tochast ic  behavior .  Several  
a p p r o x i m a t i o n  techniques  have evolved for the analysis  of non l inea r  sto- 
chast ic  equat ions.  A m o n g  the most  useful of these is the m e t h o d  of 
stat ist ical  l inear izat ion.  (5-16) 
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The method of statistical linearization consists of the replacement of 
nonlinear stochastic equations with linear ones whose coefficients are 
determined by an error minimization algorithm. This algorithm is appropri- 
ate in the asymptotic (i.e., stationary) regime and leads to algebraic equa- 
tions for the coefficients of the "equivalent" linear system. 

In many physical systems it is the transient regime in which one is 
interested. (1-~7) In other physical situations one is interested in driven 
systems that never achieve a time-independent stationary state. (1s'~9) One 
example that has been of considerable recent interest is that of the transient 
radiation of a laser close to threshold. (Iv) Another is the water wave field 
driven by the wind. (~6) These time-dependent features of the evolution 
cannot be treated faithfully by ordinary statistical linearization. 

We have extended the method of ordinary statistical linearization to 
allow for the description of such time-dependent phenomena. This has been 
accomplished by allowing the variational coefficients of the "equivalent" 
linear system to be time dependent, and minimizing the corresponding 
time-dependent error at each time. Instead of algebraic equations we now 
obtain ordinary differential equations for the linearization parameters. 
These evolution equations ensure that the algorithm minimizes the error 
continuously as the system evolves in time. We have therefore replaced the 
original system of stochastic nonlinear differential equations (with constant 
coefficients) with a system of linear stochastic equations with time- 
dependent coefficients. As noted, these time-dependent coefficients are 
determined by a set of ordinary differential equations. Related techniques 
have been developed by Eaves and Reinhardt (2~ and also by Iwan and 
Mason.(21) 

The difficulty in determining the statistical properties of the system by 
solving the stochastic dynamic equations directly is well known: the calcu- 
lation necessitates generating an ensemble of fluctuations and generating a 
solution of the equations for each member of the ensemble. This is a 
tractable method for linear systems but practically impossible for most 
nonlinear systems. A more viable procedure (even for linear systems) is to 
consider instead the time evolution of the phase space distribution rather 
than the dynamical equations. Of course the two descriptions are formally 
equivalent, as can be seen from Liouville's theorem, ca) The phase space 
distribution for a linear system with Gaussian delta-correlated fluctuations 
follows immediately from a generalization of Doob's theorem (22) and is a 
multivariate Gaussian. A linear system with n degrees of freedom can be 
described by a Gaussian with an n • n correlation matrix and n means, all 
of which are generally time dependent. We can relate these distribu- 
tion parameters to the time-dependent linearization coefficients in our 
"equivalent" linear system. We have therefore replaced an ensemble of 
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nonlinear systems of unknown statistics by an ensemble of linear systems 
with Gaussian (time-dependent) statistics. 

In this paper we restrict our analysis to single degree of freedom 
systems. The formal procedure for extending the method to more degrees of 
freedom is straightforward. However, the algebraic details are sufficiently 
tedious that one would carry them out only for particular applications 
rather than in full generality. This we do for the transient radiation of a 
single mode laser in the sequel. (23) 

In Section 2 we present our method for a general dissipative single 
degree of freedom system. In Section 3 we apply the procedure to a 
particular system, i.e., one with cubic and quadratic nonlinearity. We 
consider both initial condition effects as well as the time-dependent behav- 
ior due to a harmonic driver. We end with a short conclusion in Section 4. 

2. APPROXIMATE GAUSSlAN REPRESENTATION OF EVOLUTION 
EQUATIONS (AGREE) 

In this section we investigate the optimal linear representation of 
fluctuations for a single degree of freedom nonlinear system. It is our intent 
to take into account the full nonlinear character of the system in the 
absence of fluctuations, but to consider the optimal linearization of fluctua- 
tions about the nonlinear deterministic behavior of the system. 

Consider the single degree of freedom stochastic differential equation 

2 + Xx + F(x)  = Q(t) + M ( t ) f ( t )  (2.1) 

In Eq. (2.1) 2t is a real parameter, F(x) is a nonlinear function of x, Q(t) is 
a deterministic driver, f ( t )  is a stochastic function, and M(t) is a determinis- 
tic modulation of the stochastic driver. We assume that the fluctuations 
have the following properties: (1) They are zero-centered, 

( f ( t ) )  = 0 (2.2) 

(2) They are delta correlated in time with strength 2D, 

( f ( t ) f ( t ' ) )  = 2D6(t - t') (2.3) 

and (3) the higher cumulants vanish, i.e., f ( t )  has Gaussian statistics. 
We separate the evolution of the system into the deterministic portion 

y(t)  that describes the system in the absence of the fluctuating driver, and a 
portion ~'(t) that describes the fluctuating dynamics of the actual system 
about the deterministic path. We thus write 

x( t )  = y ( t )  + ~(t) (2.4) 

where y(t)  is the solution of (2.1) in the absence of fluctuations and hence 
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obeys the deterministic equation 

2(t)  + Xy(t) + F(y) = Q(t) (2.5) 

with initial condition y (0 )=  x(0). The difference variable is therefore 
governed by the stochastic equation of motion obtained by subtracting 
(2.5) from (2.1), i.e., 

(t) + X~(t) + G(y, ~) = M(t ) f ( t )  (2.6) 

with 
G(y, ~) = F(y  + ~) - F(y)  (2.7) 

and with the initial condition ~'(0)= O. We note that (2.5) and (2.6) still 
constitute an exact representation of the system (2.1). 

2.1. Time-Dependent Generalization of Statistical LinearizaUon 

We now wish to replace (2.6) with an optimal approximate linear 
stochastic differential equation. This procedure for treating the stochastic 
variable f(t) approximately while retaining the exact solution for the 
deterministic portion y(t) is sensible if the principal variations of the 
functions y(t) and f(t) occur on different time scales. To clarify what is 
meant by this statement, let us first consider equation (2.6). The temporal 
variations of f(t) are determined by the parameter X, by the variations of 
y(t) (cf. below) and M(t), by the form and strength of the nonlinear 
function G(y, ~'), and by the stochastic forcef(t). We presume that of these, 
the shortest time scale is introduced by the stochastic fluctuation f(t)  
[otherwise the entire description (2.1) with the assumption (2.3) is unreason- 
able], and that no important features on this short time scale other than 
those produced by f(t)  occur in (2.6). We thus presume that g(t) fluctuates 
rapidly about a slowly varying path, and that these two variations of ~(t) 
are quite distinct. 

Since the stochastic function f(t) depends on y(t) via the nonlinear 
function G(y, f), implicit in the above statement is the assumption that the 
temporal variations of y(t) are much slower than those of f(t). The time 
scales for variations of y(t) are determined by the parameter X, the period 
of the driving function Q(t), and the nonlinear function F(y) in (2.5). 
Although such a nonlinear term in general can generate higher and higher 
frequencies in y(t) as the system evolves, we must restrict our studies to 
cases in which these high-frequency components either contribute negligi- 
bly to y(t) or, at least, do not seriously affect the behavior of f(t). In other 
words, we restrict our method to systems in which the principal variation of 
y with time is slow compared to the fluctuations introduced by f(t). 

Since we specifically wish to consider nonstationary problems [i.e., 
since the function y occurring in (2.6) depends on time], it might be 
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expected that the linear equation that best reproduces the behavior of (2.6) 
(by any measure one wishes to choose) also changes with time. It then 
becomes appropriate to replace (2.6) by a different linear equation at each 
time point, i.e., by a linear equation with time-dependent coefficients. In 
this paper we develop a procedure to carry out just such an optimization at 
each time. 

The method we develop below is a suitable generalization of the 
method of statistical linearization. In the past, statistical linearization has 
been developed for the study of stationary properties of nonlinear stochastic 
differential equations of the form (2.1) with Q(t) - -0  and M(t) = 1, and is 
based on the replacement of (2.1) as t-> ~ with the linear equation (5 16) 

2 + (k + I~)x = f ( t )  (2.8) 

This replacement is suitable if F(x)+ Xx is the derivative of an open 
concave function of x, and we restrict ourselves to this case in our 
discussion of the traditional method. The parameter/z  is chosen so as to 
minimize the mean square value of the error e(x) = [F(x) - / , x ]  made in 
Eq. (2.1) by the replacement of F(x) by /zx. The expression for /~ that 
emerges from this criterion is 

(xF(x) )  
# -  (x2)  (2.9) 

The averages in (2.9) are taken over an ensemble of realizations of f(t)  as 
t ~ m. Alternatively, one can construct an evolution equation for the phase 
space probability density P(x, t) of the stochastic process; the averages in 
(2.9) are then calculated with respect to the stationary distribution P(x, t 

r [the existence of this distribution is ensured by the form of F(x) 
assumed here], e.g., 

(xF(x ) )  = f dx P(x, t ---> oo)xF(x) (2.10) 

The value of /, obtained from (2.9) is therefore constant in time. It can 
easily be shown that the mean value ( x )  = 0 obtained from (2.8) as t---> 
is identical with the mean value obtained from (2.1) when Q = 0, M = 1 
and t--> oo. The mean square value (x  2) obtained from (2.8) is identical 
with that of (2.1) if the exact distribution P(x,t--->~) is used in the 
calculation of t*. If the distribution corresponding to (2.8) is used in (2.9) so 
that # is determined self-consistently, then the mean square value obtained 
from (2.8) is approximately equal to that of the nonlinear system. In Fig. 1 
we compare the exact vs. approximate mean square values as a function of 
a for the choice F(x) = ax 3 for fixed parameters 3, and D. In Fig. 1 we 
show the exact "potential function" 

( X x 2 (2.11) V(x) = )oXF(x ') dx' + 
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for the example V(x)= o~x4/4 + ~x2/2 and we also show the harmonic 
potential function (X + ~)x2/2 for two values of ~, with /~ obtained 
self-consistently. The harmonic potential is clearly designed to approximate 
the exact one in the region x 2 ~< (x2). 

We wish to generalize the method of statistical linearization to nonsta- 
tionary solutions of (2.1). The nonstationarity may be due to transient 
behavior from a given initial condition and /o r  it may be due to the 
nonstationary functions Q(t) and M(t). The generalization will therefore 
allow us to analyze (2.1) for all times. The long-time correlation properties 
for a system with Q(t) = 0 and M(t) not constant have been analyzed in 
Ref. 21. To carry out our generalization, we consider (2.1) in the representa- 
tion (2.5) and (2.6), and then replace (2.6) by the approximate linear 
equation 

~: (t) + IX +/~(t)]ff(t)  - y(t)  --- M(t) f ( t )  (2.12) 

where /x(t) and y(t) are time-dependent functions to be determined. The 
error made in the equation by this replacement is 

c( t) = [ G(y, ~ ) - t~( t)f ( t) + r( t) l (2.13) 

The functions/~(t) and y(t) are chosen so as to minimize the mean square 
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value of the error c(t) at each point in time, i.e., by requiring that 

a@2(t))t a@2(t)>, 
- 0 ,  - 0 ( 2 . 1 4 )  a (t) a (t) 

Substituting (2.13) into (2.14) and solving explicitly for/~(t) and ~,(t) gives 
the relations 

~( t )  ~--- <~2>t_ (~'>~ (2.15) 

<~>,<~G(y,~)>,- <~2>,<G(y,~)>, 
= ( 2 . 1 6 )  

~/(t) <if2> t _ <ff>2 

To complete the prescription for the determination of the time- 
dependent linearization functions, it is necessary to specify how the aver- 
ages ( >t are to be evaluated. The averages are still to be interpreted as 
averages of the dynamical variables over an ensemble of realizations of the 
fluctuations, but now at time t rather than as t ~ or. Equivalently, One can 
again construct an evolution equation for the phase space density P(x, t) 
and compute averages according to the definition 

(G(x(t))>, -- f dx G(x)P(x, t) (2.17) 

Ideally one would use the exact probability density in (2.17). However, that 
implies that one can solve the original problem exactly, Since this is what 
one cannot do, it is necessary to use an approximate probability density. 
We propose to use the exact probability density obtained for the linearized 
problem (2.12). Since this density contains the unknown functions/z(t) and 
y(t), equations (2.15) and (2.16) constitute self-consistent integral equations 
for the unknown functions. As t--)oo and/ / ( t )  and y(t) become constants, 
P(x,t) approaches the equilibrium distribution appropriate to ordinary 
statistical linearization and the integral equations (2.15) and (2.16) then 
reduce to algebraic equations. 

2 . 2 .  Approximate Gaussian Distribution 

The equation of evolution for P(~',t) corresponding to (2.12) is the 
Fokker-Planck equation 

a 2 
+ DM2(t) ~ P(~, t) (2.18) 
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Since Eq. (2.12) is linear, the solution of (2.18) must be Gaussian with 
time-varying mean s(t) and variance v(t): 

P(f, t)=[2~rv(t)l- l /2exp{--[f  - s(t)12/2v(t)} (2.19) 

The functions s(t) and v(t) must of course be uniquely determined by the 
minimization functions 7(t) and /~(t). The relation between s(t),v(t) and 
"/(t),/x(t) is not a trivial one and can only be given directly through integral 
relationships or through differential relationships. It is more straightforward 
to construct the differential relationships by direct application of the 
Fokker-Planck equation (2.18). The derivative of the mean value of f is 

= - Ix  + . ( t ) ] , ( t )  + r ( t )  (2.20) 

where we have used the right-hand side of (2.18). It is clear that (2.20) 
could also have been obtained by direct averaging of the linearized equa- 
tion (2.12). The derivative of the variance is 

e(t) = f r P(g,t)df- 2s(t)~ (t) 

= -2[~ .  + ~(t)]v(t) + 2DM2(t) (2.21) 

where again we have used the right-hand side of (2.18). This equation 
cannot be obtained directly by multiplying (2.12) by f( t)  and then averag- 
ing since then one must determine the correlation (f(t)f(t)). 

One can now in principle solve (2.20) and (2.21) for s(t) and v(t) with 
s(0) = v (0 )=  0 and use this solution to express the right-hand sides of 
(2.15) and (2.16) solely in terms of y(t) and/~(t). Equivalently and more 
conveniently for computational purposes, we can use (2.15) and (2.16) to 
express 7 (0  and/z(t) in terms of s(t) and v(t), and use these results to close 
the system of equations (2.20) and (2.21). 

We have thus managed to approximate the nonstationary probability 
distribution corresponding to a nonlinear stochastic differential equation 
(2.1) by a Gaussian distribution with time-dependent parameters that 
satisfy a set of coupled deterministic differential equations. We refer to this 
reduction technique as AGREE. The only exact ways to solve the problem 
(2.1) are either by direct integration involving an ensemble of N members, 
where N must be large in order to get adequate statistics, or by the solution 
of the exact Fokker-Planck equation, which is a partial differential equa- 
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tion with nonlinear coefficients. Either of these is substantially more 
arduous than the numerical solution of the small set of first-order ordinary 
differential equations involved in AGREE. 

2.3. Limitations on the Present Version of AGREE 

Since the exact distribution corresponding to (2.1) is here approxi- 
mated by the unimodal distribution (2.19), we expect the approximation to 
be adequate when the potential function 

V(f; y) = f0;G(f' ,  y) dr' + x~'22 (2.22) 

has a single minimum at all times. For potentials with more than one 
minimum, it may be necessary to extend the present formalism to multi- 
modal distributions. 

3. APPLICATION 

The test of any approximation technique is how faithfully the approxi- 
mate solution reproduces the exact solution. For stochastic differential 
equations a single realization of the solution does not have any special 
significance. Only the moments of the solution correspond to physically 
interesting quantities. We select the equation 

2(0  + Xx(t) + Bx3(t) + Ax2(t)sgnx(t) = f ( t )  + Q(t) (3.l) 

as the model system on which to test the AGREE. This approximation is 
compared with the exact solution obtained by numerically integrating (3.1) 
for each of an ensemble of realizations of the fluctuations f(t). The 
ensemble of solutions is used to calculate (x)t  and ( x 2 ) , -  (x)t  2, which 
can then be compared with s(t) and v(t) calculated using AOREE. 

To implement the linearization technique we must evaluate the time- 
dependent parameters s(t) and v(t) using the specific nonlinear interaction 
from (3.1), i.e., 

F(x) = Bx 3 + Ax2sgnx (3.2) 

From (2.15) and (2.16) we see that the necessary averages are (~'G(f, Y))t, 
(G(~', Y))t and the moments of the deviation ~'(t) from the deterministic 
motion. Using (3.2) all these averages reduce to the two basic forms (~")t 
and (fnsgn~)t, n = 0, 1,2,3 and 4 taken with respect to the probability 
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density (2.19). The resulting rate equations for the mean and variance are 

k(t) + ks(t) = -B {3Iv(t) +y(t)s(t)][s(t) +y(t)] + s3(t)} 

-- A {2y( t ) [  v(t)/2qr]l/2exp[--(y(t) + s(t))2/21)(/') ] 

+ [ (s ( t )  + y ( t ) )  2 + v(t)]erf(y(t)  + s(t)) 

- y2(t)sgn y ( t )}  (3.3) 

and 

b( t )  + 2Xv(t )=  2D - 2B (3v( t ) [v ( t )+ (s( t )+ .)2(/))21 } 
- A  ([2v( t ) / rr] l /2[s i ( t ) -  2y(t)s(t) + 2v( t ) l  

• e x p [ - ( y ( t ) +  s(t))2/2v(t)] 

+ 2v(t)[s(t) +e(t)]erf(y(t) + s(/))} (3.4) 

which are solved subject to the initial conditions s(0) = v (0 )=  0. Equation 
(3.3), and (3.4) along with 

(t) + )ty(t) = - By3(t) - Ay2(t)sgn y(t)  + Q(t) (35)  

constitute the approximate description A~REE of the stochastic differential 
equation (3.1). We solve (3.5) subject to the initial condition y(0) = const. 

In Fig. 2 we compare the first two moments obtained from AGREE with 
the exact solution of this model system with Q(t)= O. In this and subse- 
quent comparisons it should be noted that the smooth curve is the A~REE 
solution while the jagged curve is the "exact" solution obtained as an 
ensemble average. The "exact" solution would be truly exact (and smooth) 
if there were an infinite number of members in the ensemble. We see that 
as the number of members of the ensemble is increased from 100 to 400, 
the irregularities in the exact moments are sufficiently reduced that it 
becomes clear that the "exact" solution is converging to the AOR~ solution. 

We observe that the solution to the model system for the values of the 
parameters selected in Fig. 2 decreases monotonically and the variance of 
the distribution increases rapidly at early times and appears to be reaching 
some asymptotic constant value. This solution as t ~ co yields a zero mean 
value with a finite variance provided by the fluctuating driving force. The 
transient behavior is very much like that observed in Brownian motion, i.e., 
the net response is dissipative. We have examined these moments when the 
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overall strength of the nonlinear term is increased by a factor of 4 (these 
results are not shown) and find the same qualitative behavior. We therefore 
find excellent agreement between the exact results and those of AaREE. 

In Fig. 3 we present the means and variance for the same system but 
now driven not only by the stochastic term f(t) but also by a harmonic 
driver Q(t)= cos~2t. The agreement is again seen to be excellent for this 
nonstationary system. 

By changing the sign of the linear term in (2.1), i.e., X ~ - X ,  we 
observe in Fig. 4 that the average system response is a monotonically 
increasing function of time. Here the ensemble calculation is quite close to 
the AGREE result even with only 100 members in the ensemble. The variance 
as calculated by ACREE in this case is only accurate for some initial 
conditions; i.e., the system is initially not near an unstable steady state. As 
indicated in Section 2.3, an accurate representation for all initial conditions 
would be a bimodal distribution. (24) A similar behavior has also been 
observed using a different approximation technique in discussing transient 
phenomena in the decay of unstable states. We conclude that any approxi- 
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marion scheme using a un imoda l  distr ibution for an actually b imodal  one 

would suffer the same defect at long times. An  approximate  b imodal  
dis t r ibut ion is more appropriate  in this case and  would rectify the disagree- 

ment .  

4. CONCLUSIONS 

It is apparent  from the calculations that the strategy of AGREE has 
indeed been successful. The nonl inear  stochastic differential equat ion has 

been well represented by an "equivalent"  l inear one whose coefficients are 

allowed to change with time. This procedure enables us to obta in  t ransient  
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Fig. 5. The gradient of the potential function, i.e., the force, in the statistical linearization 
and AGREE approximations are compared with the exact one at t = 0.2 sec, with A = B = 0.5, 
X= 1 and Q=0.  
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properties that one cannot reliably calculate using ordinary statistical 
linearization. This can be appreciated by contrasting the evolution of the 
"equivalent potential" (2.22) with the harmonic potential depicted in Fig. 1. 
The comparison of the gradient of these two potentials, i.e., the forces at a 
given instant, is shown in Fig. 5. Given the success of our results, we 
anticipate that one can successfully model nonlinear stochastic systems 
with many degrees of freedom in an analogous way. 
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